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The viscosity of a suspension of spheres 

By A. D. MAUDE 
City of Liverpool College of Technology 

(Received 6 May 1969) 

It is shown that in Stokes’s flow the perturbation field, due to the addition of one 
more sphere to a shear flow of a fluid containing a number of non-interacting 
spheres, has the property that the total additional shearing force, acting on any 
plane normal to the direction of velocity change, is zero. However, the perturba- 
tion velocity, integrated over such a plane, takes a constant value, positive if the 
plane lies on one side of the sphere and negative if it lies on the other side. It 
follows that the effect of all the spheres is not to alter the shearing stress at all, 
but to reduce the mean shear by a factor 1 - 24c,  where c is the concentration. 
This suggests that Einstein’s viscosity law should be altered to 7 = qo/( 1 - 2 . 5 ~ )  
when c is not small. 

1. Introduction 
If a number of spheres is added to a fluid the viscosity of the fluid appears to 

increaae. Einstein (1906, 1911) hm shown that if the density of the fluid is the 
same as that of the spheres, if the Reynolds number is sufficiently low for all 
inertial effects to be neglected, if the spheres are much smaller than the vessel 
oontaining the liquid, and if the spheres do not exert an attractive or a repulsive 
force between themselves, then for very low concentrations 

q = 7,(1+ 2*6c), (1) 

where 7 and qo are the viscosities of the suspension and fluid respectively, and 
cis the volume of spheres in unit volume of suspension. Many attempts have been 
made to extend this equation to higher powers of c for the case of equi-sized 
spheres. In  most previous work, simplifying assumptions have had to be made, 
and the present work is an attempt to extend (1) without the use of such 
assumptions. 

2. General considerations 
The liquid is considered as being sheared in an idealized viscometer consisting 

of two infinite planes y = 0 and y = H ,  the latter being moved with a velocity 
U, in the positive direction of x by a force F per unit area. The viscosity is then 
given by q0 = FH/U,. 

The introduction of spheres into this liquid will disturb the flow pattern, and it is 
convenient to consider the disturbance such that it vanishes at infinity. It is 
shown below that this implies that the average value of P is unaffected, although 
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the average value of U, is reduced. The perturbation velocity in the x-direction, 
v,, will cause the velocity to vary over any plane y = const., but when the plane 
considered is far from the spheres, and when the perturbations of many spheres 
are superimposed, the variation over the plane will vanish. This variation over 
the planes y = 0 and y = LI is called a wall effect, and will be neglected in the 
present work. 

The flow pattern may be calculated in theory by the method of successive 
reflexions. The first-order perturbation velocity caused by each sphere placed in 
the original flow is first calculated. The sum of all these perturbation velocities is 
then taken aa the initial velocity field, and the second perturbation field due to 
each sphere placed in it is calculated. Third and higher-order perturbation 
velocity fields can be calculated similarly, leading to an infinite series of terms. 
It will be shown below that second and higher-order perturbation velocity fields 
cannot affect the viscosity of the suspension. 

It appears to be difficult to prove the convergence of the above series, and, 
while it is expected to hold for low concentrations, there may well be a critical 
concentration above which it diverges. 

Lamb (1946) gives a general solution of the linearized Navier Stokes equation 
as follows: 

+z -+z--y- r2 ay axnl ax 

with two similar expressions for vv and v, obtained by cyclic permutation of 
z, y, x.  Here r2 = z2 + yz + z2, and pn, &, X, are arbitrary solid harmonics of 
degree n, and the pressure p = Zpn. 

If the origin is now taken at the centre of the added sphere, the restriction that 
the perturbation velocity and pressure must vanish at infinity implies that n < 0. 
For mathematical rigour, a proof is needed showing that it is always possible to 
satisfy the required boundary condition at the sphere surface; such a proof could 
easily be constructed using the method of 0 7, but will not be given here. 

3. Lemma 1 

velocity field is zero. 
The force in the 2-direction on any plane y = const. + 0 due to a perturbation 

The force on a plane y = const. will be given by 

and aa this must be independent of y for there to be no accelerating force on an 
infinite slab between two planes y = const., only harmonics which give rise to 
v, and wv of degree - 1 need be considered. 

Neither q5 nor X can give rise to terms in of degree - 1, and if the sphere moves 
80 that it experiences no resultant force, the significant term inpn-that is, p-z- 
must be zero. 
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4. Lemma2 

negative values of y. 
The value of Ijv,dxdz in a perturbation field is constant for all positive and 

From lemma 1 the total force in the x-direction on any plane y = const. is zero. 
That is, 

But 

and 
OD 

W,dXdZ = const. (3) 

5. Lemma 3 
The average value of (av,/ax + aw,/ay) and of azp/ax ay over the surface of any 

sphere r = const. is zero. 
If expressions for av,/ax, &,lay and azp/ax ay are found from equations (2), and 

are integrated over the surface of a sphere, only a very limited number of values 
of n will be found to give a non-zero value, and in each case n > 0, so that this 
term will not occur in the perturbation velocity. 

For example, consider the contribution of +n to the integral of aw,/ay over the 
surface of a sphere, which is 1 3  ax ay dA. 

As +,, is a solid harmonic, ay is also a solid harmonic, and by the orthogonal 
properties of harmonic functions this integral will be zero unless a2q5,Jax ay is of 
degree 0 or - 1. Therefore, v, = a+,/ax will be of degree 1 (the degree zero not 
giving P+,/ax ay of degree - 1). But as V, must vanish at  infinity this term cannot 
be included in the perturbation velocity field, so that no velocity due to the 
term +,, can contribute to the integral. 

A similar argument applied to each possible harmonic proves the proposition. 

6. Expression of the signiscant parts of the integral (3) in terms of 

As the integral (3) is a constant, only terms in v, of degree - 2 can contribute 
Pn, +a? le, 

to it, so that we are restricted to P-~, X-2.  Let 

ax-, ax-, 
aY a Z  - VZ3 = z----y--- 
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If we express p-,, q5-1, X-, in spherical polar co-ordinates, using the axis of y aa 
the line 8 = 0 and the positive (y, 2)-plane &B the plane w = 0, considerations of 
symmetry show that the only terms which contribute to the integral and give 
a value which is different for positive and negative values of y are as follows. 
First, there is 

where Pi(cos 0) denotes the associated Legendre polynomial cos 8 sin 0. This gives 

p-, = Ar-, cos ~P,~(cos e), 

for positive y, 
- n A / 3 7  for negative y. 

m m 

Vx1 ax a2 = 
S.=-m 1 x E - m  

Secondly, there is 
which gives 

X-, = Br-, sin w Pi(cos w ) ,  

- 27rB for positive y, 

2nB for negative y. 
Vx1 ax ax = 

It should be noted that terms which make the integral give the same value for 
positive and negative y may be neglected since they do not affect the rate of shear, 
and hence the viscosity, of the suspension. 

7. Expression of A and B in terms of the original flow 
To avoid the complication of the movement of the sphere we may impress a 

translational and a rotational velocity upon our axes, and thus upon the original 
flow, such that 

[47ra3 curl v],, = 0, 

[ ~ I T ~ U V  + ma3 gradp],_, = 0. 

The bracket [ ] is used to indicate that the function is to be calculated for the 
original flow, and the suffix r = 0 to indicate that its value at the origin is to be 
taken. Here a is the radius of the sphere. 

By Faxen’s theorem (proved simply by P&s in 1929), this implies the absence 
of movement or rotation of the sphere if no external force or couple is exerted 
on it. This choice of axes will not affect the perturbation velocity field. 

Lamb gives 

r cur$v = Cn(n + 1) X,. ( 5 )  

The left-hand side of both these is determined by the original flow at r = a. 
In both the original flow and in the perturbation flow 

divv = --(r%,)+--(vesinO)+-- i a  i a  avu = 0. 
ra ar rsmeae r sin 0 aw 

As and v, are equal and opposite in the original flow and in the perturbation 
flow at r = a, a(r%,)/ar must also be equal and opposite in the two flows at r = a. 
But from (4 )  we have 

a 1 n ( n + 3 ) r a  
-(r%,) = -2 --p,+xn(n+l)q5,, 
ar 7 2(2n+3)  

and the left-hand side of this is determined by the original flow at r = a. 
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If both sides of (4)  and (5 )  are multiplied by cos oPi(cos 0 )  and are integrated 
over the surface of a sphere, the orthogonal property of surface harmonics allows 
us to write 

= - J' 12" [rv,l,=, cos w ~ ; ( c o s  e)  do a cos e 
-1 0 

6n1A 36nC - - 
5 r]  a 5 a3' 

72n c =-- 
5 a3' 

where C is the constant of the harmonic 

#-3 = cr-3 cos w~g(ms e). 
Similarly, 

13=-J'  s"" [rcur~,v],,,sinwP~(cosO)dwd COSO 
-1 0 

8nB 
3 a3' 

= _ _  

5 r]a 3 a3 
A = (21, + IJ,  B = - - I  

8 n  This gives 
12 n 

As 11, I, and I3 are determined by the original flow, A and B may be found for 
an arbitrary original flow. A similar procedure could be made to yield the constant 
for each of the harmonics in the perturbation velocity field, and thus to solve the 
problem of a sphere in an arbitrary velocity field. 

8. Expression of Il and I, in terms of the original flow at the origin 
a series of spherical harmonics in the 

manner of equation ( 2 ) .  As it contains no singularities within r = a, only 
harmonice with n 2 0 are included. 

Let the original flow be expressed 

Consider the harmonics 
b2] = [A'r2 cos WP~(COS O ) ] ,  

[X,] = [B'r sin wP:(cos O ) ] ,  
= [ cv  00s w ~ i ( c o s  e)]. 

Then in a similar manner to the lmt section we get 

12na4 24n 
I 1 -  ---- A' - - a2Q' 

35 r ]  5 

12na4 72n 
7 7  5 I2 = A' - - a2Q' 

Therefore 
and 

I3 = - 2 aB'. 

A = - a5A' - 10a3r]C', 

B =  -aB. 
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Clearly, only harmonics of degree 2 can contribute 
to its value, as higher degrees will vanish when r is put as zero. Application of the 
double differentiation to all possible harmonics of degree 2 shows that 

Consider now [aap/ax 

similarly, 

and [curl, v],~ = B', 

which is zero by the hypothesis at the beginning of 0 7. 

meter plate is altered by an amount 
It follows that the difference between the values of /Jvx dx dz over each visco- 

9. Viscosity of a suspension 
If there are n spheres in unit volume, the value of U, is reduced by an amount 

nHS, where 8 is the average of 8 averaging over all the sphere centres. But from 
lemma 3, the perturbation velocity cannot affect the average value of 8, so that 
it is determined solely by the original flow. That is, 

- 
= %6.4n,$* 

H Z  
Therefore U, is reduced to 

U,( 1 - 4n $nu3) = U,( 1 - 2 . 5 ~ ) .  
The viscosity is thus 

7 = v0/(l - 2 . 5 ~ ) .  (7) 

10. Limitations of the theory 
It has been implicity assumed in the last section that no ordering has taken 

place. That is, any one sphere wiU be situated in perturbation fields which arise 
evenly throughout space. In fact, some ordering will occur. It is well known that 
the probability of finding a second sphere centre a distance r from a given sphere 
centre is zero up to r = 2a, rises to a maximum and falls again, giving an oscil- 
latory function of r of rapidly decreasing amplitude. The maxima become sharper 
aa the concentration increases. However, except near to a wall, no ordering of 
direction occurs, and as the average values of av,/ax+av,/ay and Pplaxay are 
zero for any value of r, the ordering with respect to distance will not affect the 
result. 

The possible divergence of the series mentioned in 0 2 might produce a change 
of the law at some concentration. Experiments by Higginbotham, Oliver & Ward 
(1958) show that the viscosity of a suspension of spheres obeys the law 

7 = 70/(1 - K c )  
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up to a concentration of 28%, above which concentration there is marked 
departure from this relation. The value of K obtained was slightly less than 2.6. 
It is suggested that this change of the law at c = 0.28 is due to the divergence of 
the series at higher concentrations. 

Equation (7) above agrees with Einstein’s result (equation (1)) if the square 
and higher powers of c are neglected. It also agrees with a theoretical expression 
derived by Kynch (1956) on what he calls a ‘rigid envelope’ model. Kynch’a 
expression is 

However, equation (7) does not agree with most of the other theoretical expres- 
sions which have been published. 

7 = 7 , , (1+2*5~+6 .25~~+  ...). 

The author wishes to express his thanks to his wife and to Mr H. Mulholland for 
help in preparation of the manuscript of this paper. 
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